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Introduction

* In many situations, producers and retailers are aiming to minimize their costs or
maximizing their profits.

* Producers and retailers can form coalitions in order to obtain/save as much as possible.
Constitutively, a transportation situation consists of two sets of agents called
producers and retailers which produce/demand goods.

The transport of the goods from the producers to the retailers has to be profitable.

* Therefore, the main objective is to transport the goods from the producers to the
retailers at maximum profit (Aparicio et al. (2010)). Such a cooperation can occur in
transportation situations (Sanchez Soriano et al. (2001, 2006)). However, when the
agents involved agree on a coalition, the question of distributing the obtained benefit
or costs among the agents arises.

» Cooperative game theory is widely used on interesting sharing cost/profit problems in
the areas Operations Research such as connection, routing, scheduling, production and
inventory, transportation situations (Borm et al. (2001)).
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What Has Been Done

Transportation games are examined in Sanchez-Sorianao et al. (2001).

Our paper survefys the core of the transportation games and proves the
nonemptiness of the core of transportation games.

Moreover, they provide some results about the relationship between the
core and dual optimal solutions of the transportation problem.

Sanchez-Soriano (2003) introduces an ad hoc solution concept for
transportation games called the pairwise Egalitarian solution.

In the sequel, Sanchez-Sorianao et al. (2006) examines the relationship
between the so-called pairwise solutions and the core of transportation
games.

Furthermore, they show that every core element of a transportation game
is contained in a pairwise solution with a specific weight system.




/ What Has Been Done: Continued

In the classical approach to the problem, the parameters are exactly known. In this case
the problem is fully solved using the results of Sanchez-Sorianao et al. (2001). However, in
real-life transportation situations, problem parameters are not known exactly. Agents
considering cooperation can rather forecast the lower and upper bounds for the outcome
of their cooperation. Thus, we have a transportation interval situation and to solve the
related sharing benefit problems we need suitable sets of solutions.

To handle transportation situations with interval data, the theory of cooperative interval
games is suitable: Alparslan Gok et al. (2008),(2009a,b). The reader is referred to Branzei
et al. (2010a,b ), for a brief survey on cooperative solution concepts and for a guide for
using interval solutions, when uncertainty about data is removed (Alparslan Gok et al.,

2011).

This work extends the analysis of two-sided transportation situations in Sanchez-Soriano

(2006) , and their related cooperative games to a setting with interval data, i.e., the profit
b;; of goods j by producer i, the production p, of goods of producer i, and the demand q;

of goods retailer j, in the transportation model now lie in intervals of real numbers

obtained by forecasting their values from the aspect expert view.
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Preleminaries

Definition 1: A cooperatlve interval game is an ordered pair < N,v >,
where N ={1,..,n} is the set of players, and v:2" S I(R) is the

characteristic ﬁmctzon such that v (@) = [0,0]. Here, I(R) is the set of all

nonempty, compact intervals in R. For each S € 27, the worth set (or worth
interval) v '(S) of the coalition S in the interval game < N,v > is of the form

[_(S),v (S)], where K(ﬁ) is the minimal reward which coalition S could

receive on its own and v (S) is the maximal reward which coalition S could
get.

The family of all interval games with player set N is denoted by IG". We
note that, if all the worth intervals are degenerate intervals, i.e., v (5) =

v'(S) for each S € 2V, then the interval game < N,v > corresponds in a
natural way | to the classmal cooperative game < N, v >, where v(5) = v'(S)
forall s € 2"



Preleminaries: Interval Calculus

Some classical cooperative games associated with an interval game v € IGY will play a key role,
Eamely, the border games < N ,v_' SRR, v’_> and the length game < N, |v| >, where |v’|(5) =
v'(8) — v (S) foreach S € 2". We note that v' = v + |v|.

Let I,] € I(R) with I = [LT],] = [{j], I| =T—Iand « € R,. Then,
4y =BT+ ] = [ 27+

s al = o[l 1] = [al, al].

By (i) and (ii) we see that I(R) hasa cone structure.

* Inthis paper we also need a partial substraction operator. We define I — J, only if |I| > |]|, by
I—]=[LT]- []]] [1—] 1—]] Let us note that  — ] < T —]. We recall that I is weakly
better than /, which we denote by I/, if and only if [ > ] and I > J. Furthermore, we use the

reverse notation [/, if and only if / < J and 1 < J. We say that [ is better than J, which we
denote by I > J, ifand onlyif I >= Jand I # J.



Transportation Situations

In a transportation situation the set of players is partitioned into two disjoint
subsets P and Q, containing n and m players, respectively. The members of P
will be called origin players, whereas the members of Q will be the destination
players. Each origin player i € P has a positive integer number of units of a
certain indivisible good, p,, and each destination player j € @ demands a positive

integer number of units of this good, q;. The shipping of one unit from origin

player i to destination player j producesa nonnegative real profit b;;.
TRANSPORTATION PROBLEMS (TPs)
SUPPLY DEMAND

C F

Definition 2: A transportation situation like this is characterized by a 5-tuple
(P,Q,B,p,q), where B is the nXxm matrix of profits, p is the n —dimensional
vector of available units at the origins, and q is the m —dimensional vector of
demands.




Mathematical Modelling of Transportation
Situations

Definition 3: For every transportation situation (P,Q,B,p,q) and
every coalition S € N:= P U Q, with origin players Sp:=SNP and
destination players Sy: = S N Q, and assuming that these sets are both
non-empty, we can define the maximization problem by:

T(S): maximize Z Z biix;

IESP jESQ

such that Z Xij <D, [ € Sp,
jESQ

ZXUSCIJ-, jESQ,
JESP

x,;]- = 0, (l,]) = SPXSQ.



/ Transportation Games

If we denote by 9(T(S)) the optimal value of the problem T(S), we can define a TU-game

associated with every transportation situation (P, Q, B, p, q) in the following way:

* The set of players is N = P U Q;
* The characteristic function v is given by:

,if S = @ or S is contained in P or in Q,
in any other case.

v(S) = {19(7"(5))0

Now we give the definition of a transportation game.
Definition 4. A transportation game is any TU-game v € G arising from a transportation

situation (P, Q, B, p, q). Often, we identify a transportation situation (P, Q, B, p, q) with its

associated transportation game v.



Transportation Interval Situations

A transportation interval situation like this is characterlzed by a 5-tuple (P, Q, B Shiay
where B is the nxm matrix of interval profits, p is the n —dimensional vector of

available interval units at the origins, and q is the m —dimensional vector of interval
demands.

For every transportation interval sitGiation (P, Q,B’,p', q') and every coalition S € N:=
P U Q, with origin players Sp: = § nPand destination players Sp: = S N Q, and assuming
that these sets are both non-emptpwe can define the maximization problem of the
pessimistic scenario is expressed by:y

T(S): maximize Ziesp Ljesg bijxij
suchthat = Yjcg, xi; < p_:_lE Sp,
Yjesp Xij < 4}, J € Sq,
xij =0, (i,]TE S5pXSg,
and the maximization problem of the optimistic scenario is stated as:

T(S): maximize Yiesp Z]-ESQ b’ i Xij
suchthat  ¥jcq, xij < pi, i €Sp,

Yjesp Xij < 4j J € Sq,
xi]- >0, (i,]) € SPXSQ.
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Transportation Interval Games

For every transportation interval situation (P, Q, B’,p’,q") and every coalition

S € N:= P U Q, with origin players Sp: = § N P and destination players

So:= S N Q, and assuming that these sets are both non-empty, we can define the
maximization problem of the pessimistic scenario is expressed by:

T(S): maximize Yiesp Ljesg b_{jxij
suchthat ~ ¥jeq, *i; < pj, i € Sp,
Yjesp Xij < qj» J € Sq,
xij = O) (l)]) € SP X SQ;
and the maximization problem of the optimistic scenario is stated as:

(1)

T(S): maximize Yiesp Ljesy b;xij
suchthat  ¥;eq, Xij < pj, i € Sp, (2)

ZjESp Xij = q;' j € SQ'
Xij >0, (l,]) (= Sp X SQ.
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Shapley Value

Definition: Given a coalitional game (N,v), the Shapley value of player i is given by
. it .
G ONY)= 2 oINS =1 { i) - V81

This captures the average marginal contribution of agent i, averaging over all the different
sequences according to which the grand coalition could be built up from the empty

coalition.

Imagine that the coalition is assembled by starting with the empty set and adding one

agent at a time, with the agent to be added chosen uniformly at random.
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Interval Shapley Value of a Transportation Interval Game

The interval Shapley value ®: SMIGY — I(R)" is defined by
d(w'): = %Zaen(w) m°(v"), for each v' € SMIG".

The following example shows the calculation of the interval Shapley value in the
transportation interval game.

Example. Consider < N,v' > be transportation interval game,
where N = {1,2,3} and the characteristic function v'is given by
v'(1) =v'(2) =v'(3) =v'(23) =[0,0],
v'(12) = [2,4],v'(13) = [2,3],v'(123) = [4,18].
Then, the interval marginal vectors are given in the following table. The set of
permutations of N are
o {01 = (0.23)0, = (132)0. = (2,1,3),}
o, = (2,3,1),0; = (3,1,2),0, = (3,2,1)) °
Firstly, for o, = (1,3,2), we calculate the interval marginal vectors. Then,
mi*(v") = v'(1) = [0,0],
my2(v') = v'(123) — v'(13) = [4,18] — [2,3] = [2,15],
m3?(v") = v'(13) — v'(1) = [2,3] - [0,0] = [2,3].

The others can be calculated similarly, which is shown in Table 1.



o m{ (v') | m§ (v') | mg (v')
o1=(1,2,3)[0,0] [[2,4] |[214]
oy = (1,3,2) [[0,0] | [2,15] |[2,3]
3:(2,1,3) 2,4 [10,0] |[2,14]

=1(2,3,1) | [4,18] [[0,0] |[0,0]
os=(3,1,2) | 23] |[2,15] |[0,0]
os=(3,2,1) | [4,18] | [0,0] |[0,0]

Table 1 illustrates the interval marginal vectors of the cooperative
transportation interval game. The average of the
six interval marginal vectors is the interval Shapley value of this
game, which can be shown as:

o) € (221 [1,5][L2D.
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Definition:
A payoff vector X is in the core of a coalitional game (N,v), if and only if

VSc N,in =v(N),

ieN

in >v(S).

So, core elements are imputations which are stable against coalitional deviations. No
Coalition can rightfully object to a proposal
x€C(v),

because what this coalition is allocated in total according to X at least what it can
obtain by splitting off from the grand coaltion. In particular, if

2 x> v(S),

is
then in any divison of
v(S)

among the members of S, at least one player gets strictly less then what he gets
according to x.
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Theinterval core of the transportation interval game

The dual problem of the maximization problem of the pessimistic
scenario (1) is given by the minimization problem:

TD(S)! minimize z p;u; + z C[]U]
iESp j€Sq
suchthat u; + v; = by, (i,j) € Sp X Sg,

u;,vj 20,0 € Sp,j €Sy,
and the dual problem of the maximization problem of the
optimistic scenario (2) is given by the minimization problem:

TP(S): minimize Yiesp Ditki + ZjESQ q;v;
suchthat wu; + vj = b_l-j, (i,j) € Sp X So»
0 oD IES Fes



Consider the 3-person transportation interval situation

(P,Q,B",p'.q).
P =1{1}0=123} B = ([1,3] - 124D p =359 = (12.4] }1.31):
The dual problem of the maximization problem of the pessimistic scenario T?({1,2,3}) is:

minimize 3u; + 2v, + 1v;
suchthat u, +v, =21,
uq ~F V3 = 2,
Uq,0,,03 > 0.
The unique optimal solution of this problem is (0; 1,2). This solution induces the core
imputation (0; 2,2). Hovever, the core is

C(v_’) ={(x;;¥2,¥3) ERL:xy + ¥, 22, %+ y3 2 2,01 +y, +y3 = 4},

and the dual problem of the maximization problem of the optimistic scenario T?({1,2,3})
is:

minimize 5uy +4v, + 3v3

suchthat u; +vy; = 3,
u; +vy =2 4,
Uq,V2,v3 = 0.
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The unique optimal solution of this problem is (3;0,1). This

solution induces the core imputation (15;0,3). However, the
core 1S

ok 3
Clv) = {(xl;yz,yg) EReH Y =24 nidb v >
3;x1+y,+y, =18},
Since the transportation interval game is v € JBIG", then
cw) =c"w) =Cc@)mcw)

={(x1;¥,¥5) € I(R): {x; + y, = [24]l,x1 +y, =
[2,3;x; +y, +y, = [4,18]}.
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Conclusion and Outlook

This work studies two-sided transportation situations where the agents' unitary
problem parameters (b;;, p,, q}.) in the transportation model are compact

intervals of real numbers.
* Firstly, we introduce the transportation interval situations.

* Secondly, we calculate the interval Shapley value transportation interval
game and show that interesting results concerning the interval core of a
transportation interval game.

* Moreover, we suggest a procedure that transforms an interval allocation into
a payoff vector, under the assumption that only the uncertainty with regard
to the value of the grand coalition has been resolved.

* For future research we will study interval semi-infinite transportation
problems where supplies and demands are interval numbers. The underlying
idea is to consider infinitely divisible goods. One can think of using pipelines
instead of containers for the transportation of petrol.
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