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MOTIVATION 
- Definitions 
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■ Alzheimer’s Disease (AD) 

■ Most common neurodegenerative 
disease 

■ Most common cause of dementia 

■ Causes problems with memory, 
thinking and behavior, interferes with 
daily tasks, eventually leads to death 

■ Prevalence gets higher due to 
increasing life expectancy 

■ Mild Cognitive Impairment (MCI) 

■ Cognitive impairments beyond the 

expected ones due to age and 

education 

■ Increasing risk of converting to AD 

(at a rate of approximately 10% to 

15% per year according to Petersen 

et al., 2004) 
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MOTIVATION 
- Current status (1/2) 

Estimated lifetime risk for Alzheimer’s dementia, 
by sex, at age 45 and age 65 
  
(2017 ALZHEIMER’S DISEASE FACTS AND FIGURES, Alzheimer’s 
Association, USA) 

Percentage changes in selected causes of death (all ages) 
between 2000 and 2014. 
 
(2017 ALZHEIMER’S DISEASE FACTS AND FIGURES, Alzheimer’s Association, USA) 
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MOTIVATION 
- Current status (2/2) 

Only 45% of AD patients or 

their caregivers are told of 

the diagnosis. 

 

(2017 ALZHEIMER’S DISEASE FACTS 

AND FIGURES, Alzheimer’s 

Association, USA) 
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MOTIVATION 
- How is the diagnosis made? 

■ No single test to diagnose 

■ Definite diagnosis can only be made 
postmortem (Cuingnet et al, 2011) 

– amyloid plaques 

– neurofibrillary tangles 

■ Medical history, physical exams, 
laboratory tests, neurobiological and 
mental assessment 

– A laborious process 

– Not allowing early-detection 

– Lacking objectivity 

■ Brain imaging to eliminate other 
possibilities 

– Tumors 

– Strokes 

– Hemorrhage 

– Fluid collection 

– Traumatic injuries 

■ No CAD system has yet been a part of 
the clinical routine 
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OBJECTIVES 

To develop a procedure which improves the early 
detection of AD using structural brain MRI volumes. 

•No new, unfamiliar requirements – sMRI is already a part of the 
clinical practice. 

•Objectivity – Procedure does not depend on manual assessment of 
the data. 

•Performance – High accuracy, especially high sensitivity is aimed. 

To build a foundation for a fully-automated computer-
assisted diagnostic system. 
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BACKGROUND 
 Neuroimaging Biomarkers  

 Classification with MARS/CMARS 
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STRUCTURAL 
ALTERATIONS 
in AD 
An illustration showing the 

structural alterations 

developed in mild and 

severe Alzheimer’s Disease. 

 

 

Taken from: 

https://www.brightfocus.org/alzheim

ers/infographic/progression-

alzheimers-disease  
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NEUROIMAGING 
BIOMARKERS 
ROI-based methods suffer from (Zhang and 

Wang, 2015): 

• Requirement of the expert knowledge 

• Dependency to the experience level 

• Difficulty in implementation of mutual 

information b/w voxels 

• Potential existence of other relevant regions 

• Examiners’ tendency to manual segmentation 

 

Voxel intensity-based «whole brain» approach 

provides: 

• Largest set of initial baseline features 

• Possibility of expanding the procedure for other 

neurodegenerative diseases 
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Neuroimaging-based biomarkers 



/45 

MARS 
- Multivariate Adaptive Regression Splines 
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A reflected pair of two hinge functions: The basis 
functions (x−t)+ (solid orange) and (t−x)+ (broken 
blue) used by MARS where t = 0.5* 

Function h(X1, X2), resulting 
from multiplication of two 
piecewise linear MARS basis 
functions* 

(*) T. Hastie, R. Tibshirani and J. 
Friedman, The Elements of Statistical 
Learning: Data Mining, Inference and 
Prediction, 2 ed., Springer, 2009 

𝑓 𝒙 = 𝛽0 +  𝛽𝑚𝐵𝑚 𝒙

𝑀

𝑚=1

 𝐵𝑖 𝒙 =   𝑠𝜅𝑗
𝑚(𝑥𝜅𝑗

𝑚 − 𝜏𝜅𝑗
𝑚)

+

𝐾𝑚

𝑗=1

 

𝑥 − 𝑡 + = {
 𝑥 − 𝑡, if 𝑥 > 𝑡

0, otherwise
 

𝑡 − 𝑥 + = {
 𝑡 − 𝑥, if 𝑥 < 𝑡

0, otherwise
 

A reflected pair: 

Basis functions: Model function: 
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MARS 
- Avoiding Overfit through the Backward Step 
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Backward step cancels out some basis functions and update coefficients 

accordingly. 

BACKWARD 

STEP 

ACC = 0.6689 ACC = 0.6757 
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CMARS 
- Conic Multivariate Adaptive Regression Splines 
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MARS - Backward Algorithm 

 

– 𝐺𝐶𝑉 ≔
1

𝑁

 𝑦𝑖−𝑓 𝛼 𝒙𝑖
2𝑁

𝑖=1

1−𝐶 𝛼
𝑁 

2  

 

CMARS 

 

– 𝑃𝑅𝑆𝑆 ≔  𝑦𝑖 − 𝑓 𝒙𝑖
2𝑁

𝑖=1 +  𝜆𝑚    𝛽𝑚
2 𝐷𝑟,𝑠

𝛼 𝐵𝑚 𝒕𝑚 2
𝑑𝒕𝑚

𝑟<𝑠
𝑟,𝑠𝜖𝑉𝑚

2
𝜶 =1

𝜶= 𝛼1,𝛼2
𝑇

𝑀𝑚𝑎𝑥
𝑚=1  

 

– 𝑃𝑅𝑆𝑆 ≈ 𝒚 − 𝑩 𝒅 𝜷
2

2
+ 𝜆 𝑳𝜷 2

2 

RSS 

Penalty Parameter 

Tikhonov Regularization 
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CMARS 
- Optimization 
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minimize

𝑡, 𝜷
    𝑡,

 
 

  subject to 𝒚 − 𝑩 𝒅 𝜷
2

< 𝑡,
 

                                  𝑳𝜷 2 ≤ 𝑀 .
 

 

CQP Problem 

 𝑦1 − 𝑩 𝒙1 𝜷 = 𝛽𝑀+1,

 𝑦2−𝑩 𝒙2 𝜷 = 𝛽𝑀+2,
.
.

𝑦𝑁 − 𝑩 𝒙𝑵 𝜷 = 𝛽𝑀+𝑁 ,

          𝛽𝑖
2

𝑀+𝑁

𝑖=𝑀+1

1
2

< 𝑡.

 

              𝐿1𝛽1 = 𝛽𝑀+𝑁+1,
              𝐿2𝛽2 = 𝛽𝑀+𝑁+2,

        .
        .

          𝐿𝑀𝛽𝑀 = 𝛽𝑀+𝑁+𝑀,

 𝛽𝑖
2

𝑀+𝑁+𝑀

𝑖=𝑀+𝑁+1

1
2

≤ 𝑀 .

 

N Linear constraints 

1 Conic constraint 

M Linear constraints 

1 Conic constraint 

M

O

S

E

K 
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CMARS 
- Conic Quadratic Optimization 
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CMARS replaces the backward step, does not remove basis functions.  

Instead, update coefficients. 

CMARS 

ACC = 0.6689 ACC = 0.7027 
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WHY MARS/CMARS? 

•Nonparametric: No prior assumption of any parametric form on the data 

•Adaptive: Learning from the data 

•Enables nonlinear models: Modelling interactions and dependencies between 
variables 

•Enables flexible, complex models: Superposition of linearly independent BFs 

•Global: Assessing the data as a whole, determining significance of the 
variables. 

MARS 

•Preserves information: Re-weighting the relevancy of variables 

•Mathematically more integrated: Involves utilization of regularization and 
modern optimization tools 

CMARS 
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PROPOSED 
METHODOLOGY 

 Study Data 

 Feature Extraction Method 

 Dimensionality Reduction Procedure 
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STUDY DATA 
- Subject Groups in (Cuingnet et al., 2011) 

■ Performances of 10 different approaches of 
various researchers have been evaluated 
using 509 subjects from the ADNI database 
(Cuingnet et al., 2011): 

– 5 voxel-based methods,  

– 3 methods based on cortical 
thickness, and, 

– 2 methods based on the hippocampus 

■ 3 classification experiments were performed: 

– CN/AD, CN/MCIc, and MCIc/MCInc 

■ Image properties: 

– T1-weighted MR images, 

– ADNI acquisition protocol, 

– When available, baseline scan, otherwise visiting scan, 

– Pre-processed images with some post-acquisition 
corrections: 

■ image geometry corrections,  

■ magnetic field intensity non-uniformity corrections, and, 

– “Best” quality scan is determined by the ADNI 
investigators. 

7/9/2018 EURO 2018 Valencia 18 
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STUDY DATA 
- Demographic Characteristics 
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Diagnosis Number Age Gender MMS Centers 

CN (Train) 81 76.1 ± 5.6 [60 - 89] 38 M/43 F 29.2 ± 1.0 [25 - 30] 35 

AD (Train) 69 75.8 ± 7.5 [55 - 89] 34 M/35 F 23.3 ± 1.9 [18 - 26] 32 

MCIc (Train) 39 74.7 ± 7.8 [55-88] 22M/17F 26.0 ± 1.8 [23 - 30] 21 

MCInc (Train) 67 74.3 ± 7.3 [58-87] 42M/25F 27.1 ± 1.8 [24 - 30] 30 

CN (Test) 81 76.5 ± 5.2 [63 - 90] 38 M/43 F 29.2 ± 0.9 [26 - 30] 35 

AD (Test)* 67 76.0 ± 7.1 [57 - 91] 32 M/35 F 23.2 ± 2.1 [20 - 27] 33 

MCIc (Test) 37 74.9 ± 7.0 [57 - 87] 21 M/16 F 26.9 ± 1.8 [24 - 30] 24 

MCInc (Test) 67 74.7 ± 7.3 [58 - 88] 42 M/25 F 27.3 ± 1.7 [24 - 30] 31 

Demographic characteristics of the studied patients. (Adapted from Cuingnet et al., 2011) 
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FEATURE EXTRACTION 
- Voxel-Based Morphometry (VBM) using SPM 

■ SPM 

– a MATLAB suite to organize and 
interpret neuroimaging data 

– analysis of brain imaging data 
sequences 

– a series of images from different 
cohorts, or time-series from the 
same subject 

– MRI, fMRI, PET, SPECT, EEG, and 
MEG 

■ VBM 

– sensitive to the differences b/w 
local composition of brain 
tissues, while discounting 
positional and other large-scale 
variations in gross anatomy 

– mass-univariate (analysis of 
each voxel separately) 

– independent of the a priori 
assumption that abnormalities 
are contained within specific 
anatomical regions 
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UNIFIED SEGMENTATION 
- MoG --> The Objective Function 

7/9/2018 EURO 2018 Valencia 21 

 

 

 

𝑃 𝒚 𝝁, 𝝈, 𝜸 =   
𝛾𝑘
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𝑘=1
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𝜌𝑖 𝜷 𝑦𝑖 − 𝜇𝑘
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2𝜎𝑘
2

𝐾
𝑖

𝑘=1

𝐼
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Bias field 
correction 

Tissue 
segmentation 

Template 
matching 

(Top)   An example MoG model visualization*. 

 

(Bottom)    T1 MRI Tissue intensity 

distributions*. 

 
* Taken from Ashburner’s SPM course notes 
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UNIFIED SEGMENTATION 
- Native Space-Aligned Tissue Probability Maps (TPM) 
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• Original Image 

• Gray Matter TPM 

• White Matter TPM 

• CSF TPM 

• Native-space aligned 

• 256 x 256 x 166 

• 0.938 x 0.938 x 1.2 

mm anisotropic 

resolution 

• # of Gaussians:  

• 3 for GM 

• 2 for WM 

• 2 for CSF 

• 5 for others 
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SPATIAL NORMALIZATION 
- MNI* Space 
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■ 121 x 145 x 121 

■ 1.5 x 1.5 x 1.5 mm isotropic 

resolution 

■ Still group-wise unregistered! 

■ Rigid body registration + Zoom 

■ (Top) Coronal, sagittal, axial 
views of an example GM native 
space-aligned TPM 

■ (Bottom) Axial, sagital, coronal 
views after normalization to the 
MNI space 

*MNI: Montreal Neurological Institute 
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GROUPWISE NONLINEAR REGISTRATION 
- DARTEL Templates & Flow Fields 
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(Left)   Initial vs final 

averages of GM, WM, and 

CSF  

 

(Top)   Flow-field example 

Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra 

■ A diffeomorphism is a 

differentiable mapping 

with a differentiable 

inverse, i.e., non-zero 

Jacobian determinant. 

■ Modeling transformations 

with diffeomorphisms 

ensures certain unique 

and desirable topological 

properties. 

■ The exponential mapping 

maintains only a single 

vector field that is 

constant in time. 
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FINAL STEPS 
- Smoothing & Intensity Modulation 

Spatial Smoothing 

■ 8 mm FWHM, 

■ Improvement of the signal to noise ratio 
(SNR), thus, sensitivity – The Matched 
Filter Theorem, 

■ Improving validity of the statistical tests by 
making the error distribution more normal, 

■ Accommodation of anatomical and 
functional variations between subjects, 

■ Reduction of spatial resolution of the 
data. 

Intensity Modulation 

■ Correction of the volumetric 

differences which are inevitably  

introduced by warping, 

■ Normalized tissue volume is 

adjusted by multiplying by its 

relative volume before and after 

warping, 

■ Total amount of tissues are 

preserved. 
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BASELINE FEATURES 
- Tissue Probability Maps (TPM) 

7/9/2018 EURO 2018 Valencia 26 
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DESIGN MATRIX 
- AD/CN Group 
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𝑮𝑴𝟏
𝟏 ⋯ 𝑮𝑴𝒏

𝟏 𝑾𝑴𝟏
𝟏 ⋯ 𝑾𝑴𝒏

𝟏 𝑪𝑺𝑭𝟏
𝟏 ⋯ 𝑪𝑺𝑭𝒏

𝟏 𝑳𝟏

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮
𝑮𝑴𝟏

𝑵 ⋯ 𝑮𝑴𝒏
𝑵 𝑾𝑴𝟏

𝑵 ⋯ 𝑾𝑴𝒏
𝑵 𝑪𝑺𝑭𝟏

𝑵 ⋯ 𝑪𝑺𝑭𝒏
𝑵 𝑳𝑵

 

 

N = 150 

Instances 

n = p/3 = 2,122,945 

GM tissue 

probabilities 

n = p/3 = 2,122,945 

WM tissue 

probabilities 

n = p/3 = 2,122,945 

CSF tissue 

probabilities 

N=150 

class 

labels 

p = 6,368,835 variables 

(7.12 GB !) 

Reduced by background 

elimination to: 
2,112,054 variables 
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DIMENSIONALITY 
REDUCTION Step I: 

Statistical 
Analysis 

Step II: 
Tissue 

Probability 
Criteria 

Step III: 
Within-Class 

Norm 
Thresholding 

a 3-Step, Hybrid 

Procedure for Feature 

Selection 
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DIMENSIONALITY REDUCTION 
- Step I: Statistical Analysis 
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Two-sample t-Test  

• Compare the means of the two 
populations at each voxel  

• Discriminate the statistically 
significant voxel positions from others 

𝒚 = 𝑿𝒃 + 𝒖 

𝒚: the vector of independent observations 
𝑿: contains the tissue probabilities as features  
𝒃: the vector of unknown parameters 
𝒖: errors - independent and identically distributed 
(i.i.d.) random variables with mean value 0 

GLM: General Linear Model is a generalization of multiple linear regression model 

to the case of more than one dependent variable. 

Map explorer 

Response 



/45 

DIMENSIONALITY 
REDUCTION 
- Step II:  
Tissue Probability Criteria 

A modification to the STAND Score (Vemuri, 2008) 

1. 𝑃𝐺𝑀 𝑖, 𝑗 +  𝑃𝑊𝑀 𝑖, 𝑗 < 𝜏1, ∀𝑖 ∈ 1, 2, … , 𝑛  

sum of probabilities of being gray matter and white matter is 
smaller than the first threshold, 𝜏1 

 

2. 𝑃𝐺𝑀 𝑗 + 𝑃𝑊𝑀 𝑗 < 𝜏2 

the sum of the sample means of probabilities of being gray 
matter and white matter is smaller than the second 
threshold, 𝜏2 

 

Optimum thresholds: 

𝛕𝟏 = 𝟎. 𝟓 and 𝛕𝟐 = 𝟎. 𝟕 
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TRAINING 

SAMPLES 

1. 𝐺𝑀 +  𝑊𝑀  
in each sample 

2. 𝐺𝑀 + 𝑊𝑀  
across samples 
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DIMENSIONALITY 
REDUCTION 
- Step III: Within-Class Norm 
Thresholding 

𝑃(𝑗) 2 =  (𝑃(𝑖, 𝑗))2

𝑛

𝑖=1

 

𝜇𝑐 =
 𝑃(𝑗) 2𝑗∈𝑐

𝑗𝑐
,     𝑐 ∈ {GM, 𝑊𝑀, 𝐶𝑆𝐹} 

𝑃(𝑗) 2 < 𝜖𝜇𝑐 

 

𝝐 = 0.9 
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𝜇𝐺𝑀 𝜇𝑊𝑀 𝜇𝐶𝑆𝐹 
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PERFORMANCE 
EVALUATION 

 Parameter Optimization 

 Results 

 Discussion 
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Voxel-MARS (ANOR SI: OR in Neuroscience) 
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PERFORMANCE MEASURES 

 

■ ACCURACY:  

– (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)  

■ SENSITIVITY (RECALL): 

– 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)  

■ SPECIFICITY: 

– 𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)  

■ PPV (PRECISION): 

– 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)  

■ NPV: 

– 𝑇𝑁 (𝑇𝑁 + 𝐹𝑁)  

■ AUC 
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Actual Classes 
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PARAMETER 
OPTIMIZATION 
- N-Times Replicated k-Fold 
Cross-Validation 

AD/CN: 150, MCI/CN: 120,  

MCIc/MCInc: 104 training samples. 

To keep training samples constant at each 

iteration:  

𝑆𝐴𝑀𝑃𝐿𝐸 𝑆𝐼𝑍𝐸 ×  (𝑘 − 1)/𝑘 ≈  100. 

To keep total repetition at each iteration 

constant:  

Keep 𝑛 × 𝑘 constant. 

AD/CN: n = 18, k = 3, MCI/CN: n = 9, k = 6, 

MCIc/MCInc: n = 3, k = 18 

7/9/2018 EURO 2018 Valencia 35 

Coarse: 
𝑀𝑚𝑎𝑥 ∈ 11, 21, … , 101  

𝐾𝑚𝑎𝑥 ∈ {1, 2, 3} 

 

Fine: 
𝑀𝑚𝑎𝑥 ∈ 𝑀𝑚𝑎𝑥1 − 8, … , 𝑀𝑚𝑎𝑥1 − 2, 𝑀𝑚𝑎𝑥1, 𝑀𝑚𝑎𝑥1 + 2, 𝑀𝑚𝑎𝑥1 + 8  

𝐾𝑚𝑎𝑥 ∈ {1, 2, 3} 
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Dimensionality Reduction 
- Results 

7/9/2018 EURO 2018 Valencia 36 

6,368,835 

variables 

2,112,054 

variables 

3,320 

variables 

Zero-Voxel 

Elimination 

Feature 

Selection 
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Dimensionality Reduction 
- A Comparison with Commonly-Used Methods 
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  SEN (%) SPE (%) PPV (%) NPV (%) 

Voxel-MARS 83.58 86.42 83.58 86.42 
PCA 82.09 71.60 70.51 82.86 

MDS 82.09 71.60 70.51 82.86 

Laplacian Eigenmaps 79.10 74.07 71.62 81.08 

Kernel PCA 2.99 95.06 33.33 54.23 

Diffusion Maps 91.04 1.24 43.26 14.29 

GDA 0 100 - 54.73 

None 67.16 81.48 75.00 75.00 

Our procedure for dimensionality reduction is compared with other commonly used techniques, in terms of 
sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and negative predictive value (NPV) outcomes. 
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Classification with MARS (1/3) 
- AD/CN Case 

7/9/2018 EURO 2018 Valencia 38 

Method ID Method Name SEN SPE PPV NPV 

0 Voxel-MARS 83.58% 86.42% 83.58% 86.42% 

1.5.1 a Voxel-COMPARE-D-gm 82% 89% 86% 86% 

1.1.1 a Voxel-Direct-D-gm 81% 95% 93% 86% 

1.4.1 b Voxel-Atlas-D-all 81% 90% 87% 85% 

2.2 Thickness-Atlas 79% 90% 87% 84% 

1.4.1 a Voxel-Atlas-D-gm 78% 93% 90% 83% 

Performance of Voxel-MARS in AD/CN classification is compared to those of the 5 highest-ranking 

methods in terms of sensitivity. Voxel-MARS provides the highest sensitivity outcome. 
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Classification with MARS 
- A Comparison to the Average Success Rates 

  AD/CN 

  SEN SPE PPV NPV 

AVERAGE 71.46% 89.39% 85.18% 78.93% 

STD. DEV. 5.65% 5.03% 6.23% 3.88% 

MARS 83.58% 86.42% 83.58% 86.42% 

DIFF. 12.12% -2.97% -1.60% 7.49% 
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Feature Extraction Method: VBM 
- A Comparison with Other Feature Descriptors 

ACCURACY SIFT* HOG** Voxel-MARS 

Our Implementation 0.71 0.74 0.85 

(Toews et al., 2010) 0.71 - - 

(Daliri, 2012) 0.75 - - 

(Chen et al., 2014) 0.74 - - 

(Cattell et al., 2016) - 0.90* - 

(Ameer et al., 2017) - 0.68 - 

(Unay and Ekin, 2011) - 0.74 - 
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• Voxel-MARS 

outperforms feature 

descriptors in terms of 

accuracy. 

 

• * (Cattell et al., 2014) 

does not involve early 

diagnosis, involves 

classification of 

amyloid status. 

 

*SIFT: Scale-Invariant Feature Transform  

**HOG: Histogram of Oriented Gradients 
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Classification with CMARS 
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Accuracy gathered by CMARS for varying parameter values.  

(𝑀𝑚𝑎𝑥 ∈ 11, 21, … , 101 ;  𝐾𝑚𝑎𝑥 ∈ 1, 2, 3 ; 𝑀 = 1).   

Higher accuracy in higher dimensions and 

higher degree of interactions. 
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MARS vs. 
CMARS 

- Confusion matrices  

- SEN and SPE outcomes 

per classification group, acquired by 

MARS & CMARS. 

CMARS provided higher specificity in: 

- AD/CN 

- MCIc*/MCInc** 

classification cases. 
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MARS 

True Classes 

AD/CN MCI/CN MCIc/MCInc 

H D H D H D 

Predictions 

Healthy 70 11 72 8 40 14 

Diseased 11 56 9 29 27 23 

  TOTALS 81 67 81 37 67 37 

CMARS 

True Classes 

AD/CN MCI/CN MCIc/MCInc 

H D H D H D 

Predictions 

Healthy 71 20 67 13 42 16 

Diseased 10 47 14 24 25 21 

  TOTALS 81 67 81 37 67 37 

    AD/CN MCI/CN MCIc/MCInc 

MARS SEN (%) 83.58 78.38 62.16 

SPE (%) 86.42 88.89 59.70 

CMARS SEN (%) 70.15 64.86 56.76 

SPE (%) 87.65 82.72 62.69 

*MCIc: Mild Cognitive Impairment converting to AD, 

**MCInc: MCI not converting to AD. 



/45 

CONCLUSIONS 
 Conclusions 

 Future Outlook 
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CONCLUSIONS 
- Contributions 

■ A solid basis for a fully-automated Computer-Aided Diagnosis system for early AD 

diagnosis is built. 

■ Qualitative and quantitative comparison between VBM and Feature Descriptor-

based approach is made. VBM is shown to be more effective in early diagnosis. 

■ A novel, 3-step, hybrid Dimensionality Reduction procedure employing both 

Statistical Analysis and Domain Knowledge is developed. Proposed method 

outperformed commonly-used space-transforming methods. 

■ MARS and CMARS methods are utilized for classification of medical images for the 

first time in the literature. Very successful results are obtained, especially in terms 

of sensitivity. 

■ A flexible codebase and a high-quality dataset is ready for further use. 

■ Our paper, Voxel-MARS was published in ANOR, SI: OR in Neuroscience. 
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A FUTURE OUTLOOK 

Planned work 

• The research on MARS and CMARS will be extended to include very recent 
variants of these methods, e.g., RMARS, RCMARS, RCGPLM. 

Potential future directions 

• Methodology may be extended to produce probabilities rather than class 
labels. 

• The procedure may be extended to cover other neurodegenerative diseases. 

• Dataset may be enriched to investigate multimodal feature performance. 

• Dataset may be enriched to investigate possiblity of utilizing Deep Learning 
methods. 
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