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MOTIVATION

- Definitions

m Alzheimer’s Disease (AD)

m Mild Cognitive Impairment (MCI)

m  Most common neurodegenerative
disease

m Most common cause of dementia

m Causes problems with memory,
thinking and behavior, interferes with
daily tasks, eventually leads to death

m Prevalence gets higher due to
increasing life expectancy

7/9/2018 EURO 2018 Valencia

Cognitive impairments beyond the
expected ones due to age and
education

Increasing risk of converting to AD
(at a rate of approximately 10% to
15% per year according to Petersen
et al., 2004)

Y
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Percentage changes in selected causes of death (all ages)
between 2000 and 2014.

(2017 ALZHEIMER’S DISEASE FACTS AND FIGURES, Alzheimer’s Association, USA)
- Current status (1/2)

Percentage

Estimated lifetime risk for Alzheimer’s dementia, | <o 897
by sex, at age 45 and age 65

2017 ALZHEIMER’S DISEASE FACTS AND FIGURES, Alzheimer’s
ssociation, USA)
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MOTIVATION

- Current status (2/2)

Only 45% of AD patients or
their caregivers are told of
the diagnosis.

(2017 ALZHEIMER'’S DISEASE FACTS
AND FIGURES, Alzheimer’s
Association, USA)

Alzheimer's
disease is the
6TH LEADING
CAUSE OF DEATH
IN THE UNITED
STATES.

SENIORS
dies with Alzheimer’s or
another dementia.

Percentage of Seniors Diagnosed with
Specified Condition or Their Caregivers
Who Are Aware of the Diagnosis

93%
90%
83%
45% I

Alzheimers  Four Most Cardiovascular High Blood
Disease Common Disease Pressure
Cancers*

*Breast, Lung, Prostate and Colorecial

Only More than
of people with of people with the
ALZHEIMER'S four most common
disease or their types of CANCER
caregivers report have been
BEING TOLD OF TOLD OF THEIR

THEIR DIAGNOSIS. DIAGNOSIS.
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MOTIVATION

- How is the diagnosis made?

m No single test to diagnose

m Definite diagnosis can only be made = Brain imaging to eliminate other
postmortem (Cuingnet et al, 2011) possibilities
- amyloid plaques - Tumors
~ neurofibrillary tangles - Strokes
: . - H h
m Medical history, physical exams, emorrnage
laboratory tests, neurobiological and ~  Fluid collection
mental assessment - Traumatic injuries

- Alaborious process m No CAD system has yet been a part of
- Not allowing early-detection the clinical routine

- Lacking objectivity
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OBJECTIVES

p
To develop a procedure which improves the early
detection of AD using structural brain MRI volumes.

L

* No new, unfamiliar requirements - sMRI is already a part of the
clinical practice.

 Objectivity - Procedure does not depend on manual assessment of
the data.

e Performance - High accuracy, especially high sensitivity is aimed.

p
To build a foundation for a fully-automated computer-
assisted diagnostic system.

.
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BACKGROUND

» Neuroimaging Biomarkers
» Classification with MARS/CMARS
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STRUCTURAL
ALTERATIONS
in AD

An illustration showing the
structural alterations
developed in mild and

severe Alzheimer’s Disease.

Taken from:
https://www.brightfocus.org/alzheim

ers/infographic/progression-
alzheimers-disease

Healthy
Neuron ,- Tau Protein

‘;,p&.}f

\ Mlcrotubuies

i\

Diseased R e
Neuron

7 ~ - Disintegrating
Tov e 7 Microtubules
R

Healthy Brain

Mild
Alzheimer's Disease

Cerebral
Cortex

7 Hippocampus

Cortical

- Shrinkage

 Moderately

Severe
Alzheimer’'s Disease

Enlarged

- Ventrnicles

Shrinking

- Hippocampus

- Severe

- Cortical

X

| Wi
=l

Shrinkage

Severely

- Enlarged

Ventricles
Severe

Shrinkage of
Hippocampus

9/45


https://www.brightfocus.org/alzheimers/infographic/progression-alzheimers-disease
https://www.brightfocus.org/alzheimers/infographic/progression-alzheimers-disease
https://www.brightfocus.org/alzheimers/infographic/progression-alzheimers-disease
https://www.brightfocus.org/alzheimers/infographic/progression-alzheimers-disease
https://www.brightfocus.org/alzheimers/infographic/progression-alzheimers-disease
https://www.brightfocus.org/alzheimers/infographic/progression-alzheimers-disease

NEUROIMAGING
B I O MAR K E RS Neuroimaging-based biomarkers

ROI-based methods suffer from (Zhang and Structural Magnetic Resonance Voxel intensity
Wang, 2015): Imaging (MRI)

Requirement of the expert knowledge

Cortical surface/thickness

Positron Emission Tomography
Dependency to the experience level (PET) Hippocampus

Difficulty in implementation of mutual e e Bie e

information b/w voxels Computed Tomography (SPECT) FDG-PET

Potential existence of other relevant regions

Examiners’ tendency to manual segmentation Functional MRI (fMRI) Amyloid-PET

Voxel intensity-based «whole brain» approach

Voxel intensity

Diffusion Tensor Imaging (DTI)

provides:
Tractography
» Largest set of initial baseline features
Multimodal .
* Possibility of expanding the procedure for other Connectivity network

neurodegenerative diseases
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MARS

- Multivariate Adaptive Regression Splines

1 S (t—a)s (x—t)s

Basis Function

00 01 02 0.3 04 05

0.0 0.2 0.4 t 06 0.8
gz

A reflected pair of two hinge functions: The basis

1.0

functions (x-t), (solid orange) and (t-x), (broken

blue) used by MARS where t = 0.5*

Function h(X,, X,), resulting
from multiplication of two
piecewise linear MARS basis

functions*

(*) T. Hastie, R. Tibshirani and J.
Friedman, The Elements of Statistical

Learning: Data Mining,

Inference and

Prediction, 2 ed., Springer, 2009

A reflected pair:

Model function:

Basis functions:

M
FG) = Bo+ ) bnBu(®)
m=1

Km

B; (x) = 1_[ (S}c}"(xic}" a T’C}ﬂ))_l_

j=1

x — t, ifx>t
(x =) ={ 0, otherwise

t —x, ifx <t
(t=x) ={ 0, otherwise
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MARS
- Avoiding Overfit through the Backward Step

Backward step cancels out some basis functions and update coefficients
accordingly.

0.541 /70
.317 * max(0, x[2561] - 0.497) At 0.467 /0
.29 * max(0, 0.497 - x[2561]) /2 -0.325 1 max (0, x[2561] - 0.497) /1
.247 * max(0, x[994] - 0.0838) * max(0, 0.497 - x[2561]) /73 -1.14 *|max(0, 0.497 - x[2561]) /2
.691 * max(0, 0.0838 - x[994]) * max(0, 0.497 - x[2561]) /4 +0.213 1 max(0, =[%94] - 0.0838) * max(0, 0.497 - x[2561]) /3
.72 % max(0, 0.49%7 - x[2561]) * max(0, x[2967] - 0.0715) /5 +0.625 1 max (0, 0.0838 - =[9%%4]) * max(0, 0.497 - x[2561]) /4
uuuuuu Tt e N R ity /l6 BACKWARD -4.67 *|max(0, 0.497 - x[2561]) * max(0, x[2967] - 0.0715) I/ 5
+1.88 * max (0, x[2542] - -0.226) * max(0, 0.457 - x[2561]) /T STEP +1.81 *|max(0, =[254Z2] - -0.226) * max(0, 0.497 - x=[2561]) /6
R et ] e o e // 8 -0.579% max (0, =[%12] - 1.03) '
-0.626 * max(0, x[912] - 1.03) /19 +0.107 max (0, 1.03 - x[9%12]) // 8
+0.0852 * max (0, 1.03 - =[912]) /10 +0.208 max (0, =[2155] - -0.574) /9
+0.201 * max(0, x[2155] - -0.574) A1 +0.258 max (0, -0.574 - x[2155]) /710
4+0.251 * max(0, -0.574 - =[2155]) f7 12 +0.295 1 max(0, =[2840] - 0.165) // 11
+0.269 * max(0, x[2840] — 0.165) // +0.72 *max (0, 0.165 - x[28407) /7 (22)f
+0.604 * max(0, 0.165 - x[2840]) //a

\
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CMARS

- Conic Multivariate Adaptive Regression Splines

MARS - Backward Algorithm

- GCV = w
N Al

1- N

RSS

Penalty Parameter
CMARS /
2
- PRSS:= Zm";‘i@z =1 % r<s [ Bm[DFsBn(t™)] dt™
a=(ay,a,)T 1,S€Vim 1

- PRSS = ||y - B(a)ﬁﬂz + A@II% s | Tikhonov Regularization

7/9/2018 EURO 2018 Valencia 13 /45




CMARS

- Optimization
yi — B(x)B = Puy+1, N
y2—B(x)B = By+2 . ,
. = | N Linear constraints
CQP Problem :
minimize yn — B(xyn)B = Bu+n =

t, ;
t;ﬁ / M+N 2
5 2 = | 1 Conic constraint
subject to [y — B(d)ﬁ”2 <t <.;1[)’1 > <t.
M Lif1 = Bu+n+1)
LyBy = Bu+n+2

LM,BM = IBM+N+M:

J\

= | M Linear constraints

<XmMmwmo

)\

1

M+N+M 2
( Z ﬁi2> <. | |1 Conic constraint

i=M+N+1
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CMARS

- Conic Quadratic Optimization

Instead, update coefficients.

CMARS replaces the backward step, does not remove basis functions.

ACC = 0.6689

0.541 // 0
-0.317 * max(0, x[2561] - 0.497) /1
-1.29 * max (0, 0.497 - x[2561]) /]2
+0.247 * max(0, x[9%4] - 0.0838) * max(0, 0.497 - x[2561]) // 3
+0.691 * max(0, 0.0838 - x[994]) * max(0, 0.497 - x[2561]) // 4
-4.72 * max (0, 0.497 - x[2561]) * max(0, x[2967] - 0.0715) // 5
+0.117 * max(0, 0.4%7 - x[2561]) * max (0, 0.0715 - x[2967]) // 8
+1.88 * max (0, x[2542] - -0.226) * max(0, 0.497 — x[2561]) /ST
+0.138 * max(0, -0.226 - x[2542]) * max(0, 0.497 - x[2561]) // 8
-0.626 * max(0, x[912] - 1.03) /9
+0.0952  * max(0, 1.03 - x[912]) //
+0.201 * max(0, x[2155] - -0.574) //
+0.251 * max(0, -0.574 - x[2155]) //
+0.26% * max(0, x[2840] - 0.165) //
+0.604 * max(0, 0.165 - x[2840]) //
7/9/2018 EURO 2018 Valencia

ACC = 0.7027

0.541
-0.328 max (0, =[2561] - 0.487)
-0.772 max (0, 0.497 - =[2561])
+0.1¢c4 max (0, =[9%4] - 0.0838)
+0.399 max (0, 0.0838 - x[59%41)

-2.8 * thax (0, 0.49%97 - x[2561l]) * max(0, =[2%67]
* max(0, 0.4%7 - =[2561])

+0.0025¢
+1.%4 *Imax (0, x[2542] - -0.226)

+0.0239|* max(0, -0.226 — =x[254Z2])

-0.451 max (0, =[%912] - 1.03)
+0.257 max (0, 1.03 - x[912])
+0.297 max (0, x[2155] - -0.574)

+0.32 *|max(0, -0.574 - =[2155])
+0.345 max (0, =[2840] - 0.1653)
+0.575 max (0, 0.165 — =[2840])

* max (0, 0.497 - =[2561])
* max (0, 0.497 - x=[2561])

* max (0,

- 0.0715)
0.0715 - =[2%67]

* max (0, 0.497 - =[2561])

* max (0,

0.457 - =x[25el])

T
T
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WHY MARS/CMARS?

S \ARS |

* Nonparametric: No prior assumption of any parametric form on the data
» Adaptive: Learning from the data

e Enables nonlinear models: Modelling interactions and dependencies between
variables

* Enables flexible, complex models: Superposition of linearly independent BFs

» Global: Assessing the data as a whole, determining significance of the
variables.

]  CMARS

* Preserves information: Re-weighting the relevancy of variables

» Mathematically more integrated: Involves utilization of regularization and
modern optimization tools

7/9/2018
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MO ONID,
METHODOLOGY

» Study Data
» Feature Extraction Method
» Dimensionality Reduction Procedure
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STUDY DATA
- Subject Groups in (Cuingnet et al., 2011)

m Image properties:

Perf £10 diff i hes of - T1-weighted MR images,
m Performances o ifferent approaches o o
various researchers have been evaluated - ADNI acquisition protocol,

using 509 subjects from the ADNI database - When available, baseline scan, otherwise visiting scan,
(Cuingnet et al., 2011): -  Pre-processed images with some post-acquisition

- 5 voxel-based methods, corrections:
- 3 methods based on cortical m image geometry corrections,
| magnetic field intensity non-uniformity corrections, and,

- “Best” quality scan is determined by the ADNI
investigators.

thickness, and,
- 2 methods based on the hippocampus

m 3 classification experiments were performed:

- CN/AD, CN/MClIc, and MCic/MClinc
= USC University of N|
; S(}uthEI' n Cali_t(}rllia ALzHeIMER'S DiSEASE NEUROIMAGING INTIATIVE
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STUDY DATA

- Demographic Characteristics

Demographic characteristics of the studied patients. (Adapted from Cuingnet et al., 2011)

Diognoss | Number | Age | Gender | MM | Centers

S
CN (Train) 81 /6.1 + 5.6 [60 - 89] 38 M/43 F 29.2 +1.0[25-30] 35
AD (Train) 69 /5.8 7.5[55 - 89] 34 M/35F 23.3+1.9[18-26] 32
MClc (Train) 39 4.7 £ 7.8 [55-88] 22M/17F 26.0 £ 1.8 [23 - 30] 21
MCinc (Train) o7 /4.3 £ 7.3 [58-87] 42M/25F 271+ 1.8[24 - 30] 30
CN (Test) 81 76.5 £ 5.2 [63-90] 38 M/43 F 29.2 £ 0.9 [26 - 30] 35
AD (Test)* 67 76.0 £ 7.1 [57 - 91] 32M/35F 23.2+£2.1[20-27] 33
MClc (Test) 37 749 £ 7.0[57 -87] 21 M/16 F 26.9 £ 1.8 [24 - 30] 24
MCinc (Test) 67 4.7 £ 7.3 [958 - 88] 42 M/25 F 27.3 +1.7[24 - 30] 31
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FEATURE EXTRACTION
- Voxel-Based Morphometry (VBM) using SPM

m SPM

a MATLAB suite to organize and
interpret neuroimaging data

analysis of brain imaging data
sequences

a series of images from different
cohorts, or time-series from the
same subject

MRI, fMRI, PET, SPECT, EEG, and
MEG

7/9/2018
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m VBM

- sensitive to the differences b/w
local composition of brain
tissues, while discounting
positional and other large-scale
variations in gross anatomy

- mass-univariate (analysis of
each voxel separately)

- independent of the a priori
assumption that abnormalities
are contained within specific
anatomical regions
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I

Frequency

UNIFIED SEGMENTATION

- MoG --> The Objective Function

(Bottom) T1 MRI Tissue intensity
distributions*.

* Taken from Ashburner’s SPM course notes

(Top) An example MoG model visualization*.

i=1 =1 (2 p

[ l P(ylp o,y) = z 4@7

—log P(y|u, o, y,ﬁ @)

Template

matching

Bias field
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Tissue
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( 6% ))
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UNIFIED SEGMENTATION
- Native Space-Aligned Tissue Probability Maps (TPM)

e Original Image

* Gray Matter TPM
White Matter TPM
e CSFTPM

* Native-space aligned
e 256 x2b6x 166
e 0.938x0.938x1.2
mm anisotropic
resolution
* # of Gaussians:
3 for GM
e 2for WM
2 for CSF
» b for others

I 7/9/2018 EURO 2018 Valencia iy 29 / 45




SPATIAL NORMALIZATION
- MNI* Space

m Rigid body registration + Zoom

m (Top) Coronal, sagittal, axial
views of an example GM native
space-aligned TPM

m (Bottom) Axial, sagital, coronal
views after normalization to the
MNI space

121 x 145 x 121

1.5 x 1.5 x 1.5 mm isotropic
resolution

Still group-wise unregistered!

*MNI: Montreal Neurological Institute
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GROUPWISE NONLINEAR REGISTRATION
- DARTEL Templates & Flow Fields

Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra

m Adiffeomorphism is a
differentiable mapping
with a differentiable
inverse, i.e., non-zero
Jacobian determinant.

m Modeling transformations
with diffeomorphisms
ensures certain unique
and desirable topological
properties.

(Left) Initial vs final
averages of GM, WM, and

m The exponential mapping CSF

maintains only a single
vector field that is
constant in time.

(Top) Flow-field example

I 7/9/2018 EURO 2018 Valencia oy /45




FINAL STEPS
- Smoothing & Intensity Modulation

Spatial Smoothing Intensity Modulation
m 8 mm FWHM, m Correction of the volumetric
m Improvement of the signal to noise ratio Qifferences which are Inevitably
(SNR), thus, sensitivity - The Matched introduced by warping,

Filter Theorem, _ _ _
m Normalized tissue volume is

adjusted by multiplying by its
relative volume before and after

m Improving validity of the statistical tests by
making the error distribution more normal,

m  Accommodation of anatomical and

functional variations between subjects, warping,
m Reduction of spatial resolution of the m Total amount of tissues are
data. preserved.

= A
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BASELINE FEATURES
- Tissue Probability Maps (TPM)
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DESIGN MATRIX
- AD/CN Group

n=p/3=2122945 || n=p/3=2,122,945 n=p/3=2122,945 N=150
GM tissue WM tissue CSF tissue class
probabilities probabilities probabilities labels

GM; - 6Ml wm} ... wMml CcSF} - CSFl L,
N=150 | _ . . . . . . . . . .
Instances ‘N ' ‘N : N ' '

i GM7 - GMY wMy{ - WMY CSF; CSFY Ly

p = 6,368,835 variables Reduced by background .
(712 GB 1) elimination to: 2,112,054 variables
7/9/2018 EURO 2018 Valencia
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DIMENSIONALITY
REDUCTION

a 3-Step, Hybrid
Procedure for Feature
Selection
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DIMENSIONALITY REDUCTION
- Step I: Statistical Analysis

GLM: General Linear Model is a generalization of multiple linear regression model
to the case of more than one dependent variable.

y=Xb+u ‘

y: the vector of independent observations

X: contains the tissue probabilities as features

b: the vector of unknown parameters

u: errors - independent and identically distributed
(i.i.d.) random variables with mean value O

Map explorer

»

2R

Response
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=
T T
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e Compare the means of the two
populations at each voxel

* Discriminate the statistically
significant voxel positions from others
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DIMENSIONALITY

REDUCTION

- Step Il:
Tissue Probability Criteria

A modification to the STAND Score (Vemuri, 2008)

TRAINING
SAMPLES

1.GM + WM

sum of probabilities of being gray matter and white matter is
smaller than the first threshold, t,

2. Per (D + Py () <1,

the sum of the sample means of probabilities of being gray
matter and white matter is smaller than the second
threshold, T,

2.GM + WM
across samples

Optimum thresholds:

T1:O.SandT2:0.7

i 3 O / 4 5



DIMENSIONALITY
REDUCTION

- Step 1ll: Within-Class Norm
Thresholding

1Pz = | ) (PG

\Ji=1
_ ZjecllPII2
e

¢ € {GM, WM, CSF}

Uc

IPGDIlz < epe

€=0.9

i 3 1 / 4 5



PERFORMANCE
EVALUATION



Voxel-MARS (ANOR SI: OR in Neuroscience

Voxel-MARS: a method for early detection
of Alzheimer’s disease by classification of
structural brain MRI

The Alzheimer’s Disease Neuroimaging

Initiative

Annals of Operations Research
ISSN 0254-5330

Ann Oper Res
DOI 10.1007/510479-017-2405-7

7/9/2018

VOLEASK 2012 080

1SN RIS
Pabishd Febrwes M7

" . RESEARCH

Eforiv L.
Eadey Borsy

AFPPLIED OPTIMIZATION AND
DATA MINING, DEDICATED
TO DR. PANOS PARDALOS ON
THE DCCASION OF HIS 60TH
BIRTHDAY

CveETE Ve

A
T A Chunn s i, b A o, T s
e Sy Wang

& Springer
@ Springer

EURO 2018 Valencia

Ann Oper Res
DOT 10,1007/

1-57 @ Crasablark
7-2405-7

OR IN NEUROSCIENCE

047

Voxel-MARS: a method for early detection of Alzheimer’s
disease by classification of structural brain MRI

Alper Cevik!(» . Gerhard-Wilhelm Weber? . B. Murat Eyitboglu? -
Kader Karl Oguz? . The Alzheimer’s Disease Neurcimaging Initi

Media New York 2017

Abstract Neuroscience is of emerging importance along with the contributions of Opera-
tional Research to the practices of diagnosing neurodegenerative diseases with computer-
aided systems based on brain image analysis. Although multiple biomarkers derived
from Magnetic Resonance Imaging (MRI) data have proven to be effective in diagnosing
Alzheimer's disease (AD) and mild cognitive impairment (MCI), no specific system has yet
been a part of routine clinical practice. This paper aims to introduce a fully-automated voxel-
based procedure, Voxel-MARS, for detection of AD and MCl in early stages of progression.
Performance was evaluated on a dataset of 508 MRI volumes gathered from the Alzheimer’s
Disease Neuroimaging Initiative database. Data were transformed into a high-dimensional
space through a feature extraction process. A novel 3-step feature selection procedure was
applied. Multivariate Adaptive Regression Splines method was used as a classifier for the
first time in the field of brain MRI analysis. The results were compared to those presented
in a previous study on 28 voxel-based methods in terms of their ability to separate control
normal (CN) subjects from the ones diagnosed with AD and MCL It was observed that
our method outperformed all of the others in sensitivity (83.58% in ADJCN and 78.38%
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Table & Performance of our method is compared with the average outcomes of others
Case Matric Other methods Vonel-MARS Difference Rank
ADICN SEN T1.46£5.65 [59-82] #3.58 +12.12 1
SPE B0.30 +5.03 [T7-98] B6.42 -2497 s
PPy 85,18 £6.23 [T2-96] 8358 —1.60 21
NPV T8.93 +3 88 [T0-86] B6.42 +7.49 1
MCIe/CN SEN 54.39+£12.30 [22-73) TH3E +33.99 1
SPE BE E2+7.27 [7T3-99] 2880 -+0.07 17
PPY T1.50£11.97 [50-89] T6.32 +4.82 1z
NPV B1.21+3.60[73-87) L] +8.79 1
MCle/MClne SEN 44 20 +15.22 [22-70) 6216 +17.96 2
SPE T6.47£8.77 [61-91] 59.70 —1&77 16
PPY 51.33£7.25[39-67] 4500 —-5.33 1z
NPV 6818 £5.02 [66-79] 7407 +5.89 7

Yalues in “other methods™, “Vomel- MARS™ 2nd “difference” columns are given as percentages

Table 7 Char method compared with five methods on AINCN classification

11 Method name SEN (%) SPE (%) PPV (%) NPV (%)
1] Voxel-MARS 8358 642 8358 BA.42
15.1a Woxel-COMPARE-D-gm 82 80 86 L1
l.1L1a Voxel-Direct-D-gm Bl o5 a3 BA
141b Womal-Atlas-D-all 8l o0 87 85

22 Thickness-Atlas 7 o0 87 Bd
l41a Woxel-Atlas-D-gm T8 93 o0 23

Table 8 Char method compared with five methods on MCLCN classification

11 Method name SEN (%) SPE (%) PPY (%) NPV (%)
] Vomel-MARS 7838 BE.ED T6.32 00,00
131a Vouel-STAND-D-gm 73 85 9 a7

3Ll Hippo-Volume-F T3 T4 56

0 e Hippo-Volume-5 T 73 54

14Za Voxel-Atlas-5-gm (5] a5 26

3 Thickness-ROI 65 a4 83

An overall quantitative comparison of the performance of our method with other methods
is introduced in Table 6. Pesformance statistics of other methods are presented in the format:
“average (%) £ standard deviation (%) [range (%)]". In both of the ADVCN and ATVMCI
classification cases, all 28 methods had produced reasonable results, whereas in MCle/MClne
classification case, only 15 of them had. Therefore, for the 3rd case, 13 methods producing
“zero sensitivity” were not included in computations. The column “Differcnce” compares
the results gathered using our method and the averages of other methods as percentage.
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PERFORMANCE MEASURES

Actual Classes m ACCURACY:

- (TP+TN)/(TP +TN + FP + FN)
POSITIVE (DISEASED) NEGATIVE (HEALTHY) |= SENSITIVITY (RECALL):

w8 - TP/(TP + FN)
)] (% % True Positive (TP) False Positive (FP) = SPECIFICITY:
5 S & - TN/(TN + FP)
_"é = m PPV (PRECISION):
| v = ~ TP/(TP + FP)
= '% False Negative (FN)  True Negative (TN) s NPV:

Z T - TN/(TN + FN)

m AUC
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PARAMETER

OPTIMIZATION
: N-Times_ Replicated k-Fold

AD/CN: 150, MCI/CN: 120,
MClc/MCInc: 104 training samples.

To keep training samples constant at each
iteration:

SAMPLE SIZE x (k —1)/k ~ 100.

To keep total repetition at each iteration
constant:

Keep n X k constant.

AD/CN:n =18, k=3, MCI/CN:n=9, k=6,
MClc/MCInc: n =3, k=18

Max, Degree of Interactions: 1
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Dimensionality Reduction
- Results

| 6,368,835
: variables

| Zero-Voxel
Elimination

2,112,054
variables

Feature
Selection

il 3,320
variables
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Dimensionality Reduction
- A Comparison with Commonly-Used Methods

Our procedure for dimensionality reduction is compared with other commonly used techniques, in terms of
sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and negative predictive value (NPV) outcomes.

—
83. 58 86.42 83.58 86.42
82 09 71.60 70.51 82.86
MDS 82.09 71.60 70.51 82.86

Laplacian Eigenmaps gSNI0) 74.07 71.62 81.08
Kernel PCA 2.99 95.06 33.33 54.23
Diffusion Maps 91 04 1.24 43.26 14.29

GDA 100 - 54.73

‘None 67.16 81.48 75.00 75.00
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Classification with MARS (1/3)
- AD/CN Case

Performance of Voxel-MARS in AD/CN classification is compared to those of the 5 highest-ranking
methods in terms of sensitivity. Voxel-MARS provides the highest sensitivity outcome.

EE \oxe-MARS 83.58% 86.42% 83.58% 86.42%
Voxel-COMPARE-D-gm 82% 89% 86% 86%
Voxel-Direct-D-gm 81% 95% 93% 86%
Voxel-Atlas-D-all 81% 90% 87% 85%
Thickness-Atlas 79% 90% 87% 84%
Voxel-Atlas-D-gm 718% 93% 90% 83%
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Classification with MARS

- A Comparison to the Average Success Rates

AD/CN

SEN SPE PPV NPV

AVERAGE 71.46% 89.39% 85.18% 78.93%
STD. DEV. 5.65% 5.03% 6.23% 3.88%
MARS 83.58% 86.42% 83.58% 86.42%

DIFF. -2.97% -1.60%
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Feature Extraction Method: VBEM
- A Comparison with Other Feature Descriptors

occivaes NN
[ ] X -

Our Implementation 0.71 0.74 0.85 outperforms feature

(Toews et al., 2010) 0.71 - - accuracy.

(Daliri, 2012) 0.75 - -

Chenetal,2014) " docenot invelve early

(Chen et al., 2014) 0.74 - - does not involve early

(Cattell et al., 2016) - 0.90* diagnosis, involves
classification of

(Ameer et al., 2017) - 0.68 amyloid status.

(Unay and Ekin, 2011) - 0.74

*SIFT: Scale-Invariant Feature Transform
**HOG: Histogram of Oriented Gradients
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Classification with CMARS

Accuracy gathered by CMARS for varying parameter values.

(Mg € {11,21, ..., 101}; Kpgy € {1,2,3}; M = 1).

Higher accuracy in higher dimensions and
higher degree of interactions.

Max. Interactions: 1
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0.74

=
]

0.65

06

0.55

04a
1]

Max. Interactions: 2

........ B— cwaRs 4
: ; o : : | —E—MARS
1 1 i 1 1 ] ] T T
10 20 30 40 A0 B0 70 g0 90 100 110
Mo, of Basis Functions

7/9/2018

EURO 2018 Valencia

i 41/45




MARS vs.

True Classes

AD/CN MCI/CN MClc/MClinc
CMARS MARS H D H D
Healthy 11 72 8 40 14
Predlctlons Diseased 11 56 9 29 27 23
I 107ALS 81 67 81 37 67 37
-~ Confusion matrices
- SEN and SPE outcomes CMARS AD/CN rCVCN D rCIc/MC[I)nc

per classification group, acquired by Healthy 20 67 13 42 16
MARS & CMARS. Predlctlons Diseased 10 47 14 24 25 21

I TOTALS 81 67 81 37 67 37
| |AD/CN MCI/CN MClc/MCinc

MARS SEN (%) 83.58 78.38 62.16
SPE (%) 86.42 88.89 59.70

CMARS SEN (%) 70.15 64.86 56.76
SPE (%) 87.65 82.72 62.69

*MClc: Mild Cognitive Impairment converting to AD,
**MClnc: MCI not converting to AD.

CMARS provided higher specificity in:
- AD/CN
- MClc*/MCInc**

classification cases.
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CONCLUSIONS

» Conclusions
» Future Outlook
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CONCLUSIONS

- Contributions

m A solid basis for a fully-automated Computer-Aided Diagnosis system for early AD
diagnosis is built.

m Qualitative and quantitative comparison between VBM and Feature Descriptor-
based approach is made. VBM is shown to be more effective in early diagnosis.

m A novel, 3-step, hybrid Dimensionality Reduction procedure employing both
Statistical Analysis and Domain Knowledge is developed. Proposed method
outperformed commonly-used space-transforming methods.

m MARS and CMARS methods are utilized for classification of medical images for the
first time in the literature. Very successful results are obtained, especially in terms
of sensitivity.

m A flexible codebase and a high-quality dataset is ready for further use.

m Our paper, Voxel-MARS was published in ANOR, SI: OR in Neuroscience.
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A FUTURE OUTLOOK

Planned work

* The research on MARS and CMARS will be extended to include very recent
variants of these methods, e.g., RMARS, RCMARS, RCGPLM.

Potential future directions

 Methodology may be extended to produce probabilities rather than class
labels.

* The procedure may be extended to cover other neurodegenerative diseases.
e Dataset may be enriched to investigate multimodal feature performance.

» Dataset may be enriched to investigate possiblity of utilizing Deep Learning
methods.
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